an analysis of gene expression variations in lymphoma, using a fuzzy classification model
نویسندگان
چکیده
i n troduction: cancer is a major cause of mortality in the modern world, and one of the most important health problems in societies. during recent years, research on cancer as a system biology disease is focused on molecular differences between cancer cells and healthy cells. most of the proposed methods for classifying cancer using gene expression data act as black boxes and lack biological interpretability. the goal of this study is to design an interpretable fuzzy model for classifying gene expression data of lymphoma cancer. m e th od: in this research, the investigated microarray contained 45 samples of lymphoma. total number of genes was 4026 samples. at first, we offer a hybrid approach to reduce the data dimension for detecting genes involved in lymphoma cancer. in lymphoma microarray, six out of 4029 genes were selected. then, a fuzzy interpretable classifier was presented for classification of data. fuzzy inference was performed using two rules which had the highest scores. weka3.6.9 software was used to reduce the features and the fuzzy classifier model was implemented in matlab r2010a. results of this study were assessed by two measures of accuracy and precision. results: in pre-processing stage, in order to classify gene expression data of lymphoma, six out of 4026 genes were identified as cancer- causing genes, and then the fuzzy classifier model was applied on the obtained data. the accuracy of the results of classification was 96 percent using 10 rules with the highest scores and that using 2 rules with the highest scores was about 98 percent. c o n c l u s i o n : in the proposed approach, for the first time, a fully fuzzy method named a minimal rule fuzzy classification (mrfc) was introduced for extracting fuzzy rules with biological interpretability and meaning extraction from gene expression data. among the most outstanding features of this method is the ability of extracting a small set of rules to interpret effective gene expression in cancer patients. another result of this approach is successfully addressing the problem of disproportion between the number of samples and genes in microarrays with the proposed filter-wrapper feature selection method (fwfs). k e y w o r d s : lymphoma cancer, cancer diagnosis, microarray, gen expression, fuzzy classifier
منابع مشابه
cost benefits of rehabilitation after acute coronary syndrome in iran; using an epidemiological model
چکیده ندارد.
the use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach
abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...
15 صفحه اولa swot analysis of the english program of a bilingual school in iran
با توجه به جایگاه زبان انگلیسی به عنوان زبانی بین المللی و با در نظر گرفتن این واقعیت که دولت ها و مسئولان آموزش و پرورش در سراسر جهان در حال حاضر احساس نیاز به ایجاد موقعیتی برای کودکان جهت یاد گیری زبان انگلیسی درسنین پایین در مدارس دو زبانه می کنند، تحقیق حاضر با استفاده از مدل swot (قوت ها، ضعف ها، فرصتها و تهدیدها) سعی در ارزیابی مدرسه ای دو زبانه در ایران را دارد. جهت انجام این تحقیق در م...
15 صفحه اولan application of equilibrium model for crude oil tanker ships insurance futures in iran
با توجه به تحریم های بین المملی علیه صنعت بیمه ایران امکان استفاده از بازارهای بین المملی بیمه ای برای نفتکش های ایرانی وجود ندارد. از طرفی از آنجایی که یکی از نوآوری های اخیر استفاده از بازارهای مالی به منظور ریسک های فاجعه آمیز می باشد. از اینرو در این پایان نامه سعی شده است با استفاده از این نوآوری ها با طراحی اوراق اختیارات راهی نو جهت بیمه گردن نفت کش های ایرانی ارائه نمود. از آنجایی که بر...
Gene Expression Analysis Using Fuzzy ART
The recent advances of genome-scale sequencing and array technologies have made it possible to monitor simultaneously the expression pattern of thousands or tens of thousands of genes. One of the following steps is to discover or extract the information for the genetic networks by analyzing such massive data sets. Therefore, various clustering methods, such as hierarchical clustering [3] or sel...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
journal of health management and informaticsجلد ۴، شماره ۱، صفحات ۱-۰
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023